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Abstract

We present a novel approach for multi-object tracking
which considers object detection and spacetime trajectory
estimation as a coupled optimization problem. It is formu-
lated in a hypothesis selection framework and builds upon a
state-of-the-art pedestrian detector. At each time instant, it
searches for the globally optimal set of spacetime trajecto-
ries which provides the best explanation for the current im-
age and for all evidence collected so far, while satisfying the
constraints that no two objects may occupy the same physi-
cal space, nor explain the same image pixels at any point in
time. Successful trajectory hypotheses are fed back to guide
object detection in future frames. The optimization proce-
dure is kept efficient through incremental computation and
conservative hypothesis pruning. The resulting approach
can initialize automatically and track a large and varying
number of persons over long periods and through complex
scenes with clutter, occlusions, and large-scale background
changes. Also, the global optimization framework allows
our system to recover from mismatches and temporarily lost
tracks. We demonstrate the feasibility of the proposed ap-
proach on several challenging video sequences.

1. Introduction
Monocular multi-object tracking is a challenging, but

practically important problem. The task is to estimate mul-
tiple interacting object trajectories from a single image se-
quence, either in the 2D image plane or in 3D object space.
Typically, tracking is modeled as some kind of first-order
Markov chain, i.e. object locations at a time step t are pre-
dicted from those at the previous time step (t−1) and then
refined by comparing the object models to the current im-
age data, whereupon the object models are updated and the
procedure is repeated for the next time step. The Markov
paradigm implies that trackers cannot recover from failure,
since once they have lost track, the information handed on
to the next time step is wrong. This is a particular problem
in a multi-object scenario, where object-object interactions
and occlusions are likely to occur.

A first step to address this limitation is to combine
tracking with detection. This has only recently become
feasible due to the rapid progress of object (class) detec-

tion [4, 14, 21, 22]. The idea is to run an object detec-
tor, trained either offline to detect an entire object category
or online to detect specific objects [1, 8]. Its output can
then constrain the trajectory search to promising image re-
gions and serve to re-initialize in case of failure. Going one
step further, one can directly use the detector output as data
source for tracking (instead of e.g. color information).

Still, data association remains a difficult problem in
multi-object tracking scenarios with many similar and mu-
tually occluding targets. Classic multi-target trackers such
as Multi-Hypothesis Tracking (MHT) [18] and Joint Prob-
abilistic Data Association Filters (JPDAFs) [6] jointly con-
sider the data association from sensor measurements to mul-
tiple overlapping tracks. While not restricted to Markov
chains, they can only keep few time steps in memory due
to the exponential task complexity. Moreover, originally de-
veloped for point targets, they generally do not take physical
exclusion constraints between object volumes into account.

The aim of this work is to improve robustness in multi-
object tracking by coupling object detection and tracking in
a non-Markovian hypothesis selection framework. Our ap-
proach implements a feedback loop, which passes on pre-
dicted object locations as a prior to influence detection,
while at the same time choosing between and reevaluating
trajectory hypotheses in the light of new evidence. In con-
trast to previous approaches, which optimize individual tra-
jectories in a temporal window [2, 23] or over sensor gaps
[11], our approach tries to find a globally optimal combined
solution for all detections and trajectories, while incorporat-
ing physical constraints such that no two objects can occupy
the same physical space, nor explain the same image pixels
at the same time. The task complexity is reduced by only se-
lecting between a limited set of plausible hypotheses, which
makes the approach computationally feasible.

The paper is structured as follows. After discussing
related work, Section 2 presents our hypothesis selection
framework integrating object detection and trajectory es-
timation. Sections 3 and 4 describe the baseline systems
we employ for each of those two components, after which
Section 5 introduces our coupled formulation and Section 6
discusses details of its implementation. Section 7 finally
presents experimental results.
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Related Work. In this paper, we address multi-object
tracking in a surveillance scenario with a single, calibrated
camera. Tracking in such a scenario consists of two sub-
problems: trajectory initialization and target following.
While many approaches rely on background subtraction
from a static camera for the former (e.g. [20, 12, 2]), several
recent approaches have started to explore the possibilities of
combining tracking with detection [17, 1, 8, 22]. This has
been helped by the astonishing progress object detection
research has made over the last few years [4, 14, 16, 21],
which has resulted in state-of-the-art detectors that are ap-
plicable in complex outdoor scenes.

The second subproblem is typically addressed by clas-
sic tracking approaches, such as Extended Kalman Filters
(EKF) [7], particle filtering [10], or Mean-Shift tracking [3],
which rely on a Markov assumption and carry the associated
danger of drifting away from the correct target. This danger
can be reduced by optimizing data assignment and consid-
ering information over several time steps, as in MHT [18]
and JPDAF [6]. However, task complexity limits previous
optimization approaches to consider either only few time
steps [18] or only single trajectories over longer time win-
dows [2, 11, 23]. In contrast, our approach simultaneously
optimizes detection and trajectory estimation for multiple
interacting objects and over long time windows by operat-
ing in a hypothesis selection framework.

2. Approach
MDL Hypothesis Selection. Our basic mathematical tool
is a model selection framework as introduced in [15]. We
briefly repeat its general form here and later explain specific
versions for object detection and trajectory estimation.

The intuition of the method is that in order to correctly
handle the interactions between multiple models required
to describe a data set, one cannot fit them sequentially (be-
cause interactions with models which have not yet been es-
timated would be neglected). Instead, an over-complete set
of hypothetical models is generated, and the best subset se-
lected with model selection in the spirit of the minimum
description length (MDL) criterion.

To select the best models, the savings (in coding length)
of each hypothesis h are expressed as

Sh ∼ Sdata − κ1Smodel − κ2Serror , (1)

where Sdata corresponds to the number N of data points,
which are explained by h; Smodel denotes the cost of cod-
ing the model itself; Serror describes the cost for the error
committed by the representation; and κ1, κ2 are constants
to weight the different factors. If the error term is chosen
as the log-likelihood over all data points x assigned to a hy-
pothesis h, then the following approximation holds 1:

1This approximation improves robustness against outliers by mitigating
the non-linearity of the logarithm near 0, while providing good results for
unambiguous point assignments.

Serror = − log
∏
x∈h

p(x|h) = −
∑
x∈h

log p(x|h) (2)

=
∑
x∈h

∞∑
n=1

1
n

(1 − p(x|h))n≈N−
∑
x∈h

p(x|h).

Substituting eq.(2) into eq.(1) yields an expression for the
merit of model h:

Sh ∼ −κ1Smodel +
∑
x∈h

((1 − κ2) + κ2p(x|h)) . (3)

Essentially, the merit of a putative model is the sum over its
data assignment likelihoods, regularized with a term which
compensates for unequal sampling of the data.

A data point can only be assigned to one model. Hence,
overlapping hypothetical models compete for data points.
This competition translates to interaction costs, which apply
only if both hypotheses are selected. [15] has shown that
the optimal set of models in such a scenario is given by the
solution of the Quadratic Boolean Problem (QBP)

max
n

nTSn , S =

⎡⎢⎣s11 · · · s1N

...
. . .

...
sN1 · · · sNN

⎤⎥⎦ . (4)

Here, n = [n1, n2, . . . , nN ]T is a vector of indicator vari-
ables, such that ni = 1 if hypothesis hi is accepted, and
ni = 0 otherwise. S is an interaction matrix, whose di-
agonal elements sii are the merit terms (3) of individual
hypotheses, while the off-diagonal elements (s ij +sji) ex-
press the interaction costs between two hypotheses hi and
hj . This formulation thus provides a mathematical tool to
handle pairwise interactions between hypotheses.

Object Detection. For object detection, we use the pedes-
trian detector of [14], which utilizes the model selection
framework explained above. A full description is beyond
the scope of this paper. In a nutshell, a voting scheme based
on multi-scale interest points generates a large number of
hypothetical detections. From this redundant set, the sub-
set with the highest joint likelihood is selected by maximiz-
ing nTSn: the binary vector n indicates which detection
hypotheses shall be used to explain the image observations
and which ones can be discarded. The interaction matrix S
contains the hypotheses’ individual savings, as well as their
interaction costs, which assure that each image pixel is part
of at most one detection (details are given in Section 3).

Trajectory estimation. In [13], a similar formalism is
also applied to estimate object trajectories over the ground
plane. The image detections in a 3D spacetime volume
are linked to hypothetical trajectories with a simple dy-
namic model, and the best set of trajectories is selected from
those hypotheses by solving another maximization problem
mTQm, where the interaction matrix Q again contains the
individual savings and the interaction costs which arise if
two hypotheses compete to fill the same part of the space-
time volume (see Section 4).



Coupled Detection & Trajectory Estimation. As shown
above, both object detection and trajectory estimation can
be formulated as individual QBPs. However, the two tasks
are closely coupled: the merit of a putative trajectory de-
pends on the number and strength of the underlying detec-
tions {ni = 1}, while the merit of a putative detection de-
pends on the current object trajectories {m i =1}, which im-
pose a prior on object locations. These dependencies lead
to further interactions between detections and trajectories.
In this paper, we therefore jointly optimize both detections
and trajectories by coupling them in a combined QBP.

However, we have to keep in mind that the relationship
between detections and trajectories is not symmetric: tra-
jectories ultimately rely on detections to be propagated, but
new detections can occur without a trajectory to assign them
to (e.g. when a new object enters the scene). In addition to
the index vectors m for trajectories and n for detections, we
therefore need to introduce a list of virtual trajectories v,
one for each detection in the current image, to enable detec-
tions to survive without contributing to an actual trajectory.
We thus obtain the following joint optimization problem

max
m,v,n

[
mT vT nT

] ⎡⎣ Q̃ U V
UT R W

V T WT S̃

⎤⎦ ⎡⎣m
v
n

⎤⎦ , (5)

where the elements of V, W model the interactions between
detections and real and virtual trajectories, respectively, and
U models the mutual exclusion between the two groups.
The solution of (5) jointly optimizes both the detection re-
sults for the current frame, given the trajectories of the
tracked objects, and the trajectories across frames, given
the detections. As will be explained in Section 5, we ap-
proximate the computationally expensive full solution by
an EM-style iterative approximation.

3. 2D Object Detection
The object detection part relies on the pedestrian detec-

tor from [14] to deliver an initial set of detections. With
the help of a camera calibration, the 2D detections are con-
verted to 3D object locations H on the ground plane, and
their score is expressed in terms of the pixels they occupy

p(H |I) ∼ p(I|H)p(H) (6)

= p(H)
∏
p∈I

p(p|H) = p(H)
∏

p∈Seg(H)

p(p=fig.|H),

where Seg(H) denotes the support region of H in the im-
age I , as returned by the detector. The location prior p(H)
is split up into a uniform distance prior for the detector’s tar-
get range and a Gaussian prior for typical pedestrian sizes
p(Hsize)∼N (1.7, 0.22) [meters], similar to [9].

Two detections Hi and Hj interact if they compete for
the same image pixels. In this case, we assume that the hy-
pothesis Hk∈{Hi, Hj} farthest from the camera is occluded

and subtract its support in the overlapping image area. For
notational convenience, we define the pseudo-likelihood

p∗(H |I)=
∑

p∈Seg(H)

((1−κ2) + κ2p(p=fig.|H))+ log p(H) (7)

and obtain, with the approximation from eq. (2), the follow-
ing terms for the object detection matrix S:

sii = −κ1 + p∗(Hi|I) (8)

sij = −1
2

∑
p∈Seg(Hi∩Hj)

((1−κ2) + κ2p(p=fig.|Hk)) + κ2 log p(Hk)

For each detection, we additionally compute an object-
specific color model ai, represented by an 8×8×8 RGB his-
togram, over the object detector’s confidence region. This
color model will later be used to help group consistent de-
tections into trajectories.

4. Spacetime Trajectory Following
The optimization is fed hypothetical tracks based on the

object detections in spacetime. It is this task of finding hy-
potheses which we mean by trajectory following, not the
final selection of the best set of tracks. To find plausible hy-
potheses and to estimate their parameters, we use the Event
Cone following framework from [13], which models indi-
vidual trajectory hypotheses with the help of EKFs [7]. The
idea is simple: start from a detection Hi,t, set the initial
velocity to v = 0, and build up a trajectory by iteratively
predicting new locations at adjacent timesteps, and updating
them based on the actual detections found near the predicted
location. By repeating this for different starting points, an
initial set of putative trajectories is generated, which will
then be fed into the hypothesis selection procedure.

Trajectory Search. Each trajectory Ht0:t is represented
by a dynamic model D and an appearance model A. As
dynamic model, we adopt linear prediction with two adap-
tive parameters, velocity and bearing. The positional uncer-
tainty around the predicted location [xp

t+1, y
p
t+1]

T is approx-
imated by an oriented Gaussian. Note that the dynamics are
modeled in the 3D ground plane, not in the image plane.
The appearance model A is defined as the trajectory’s color
histogram, which evolves as the trajectory progresses.

With a threshold for the likelihood, the EKF defines a
cone in spacetime. Given a partially grown trajectoryH t0:t,
we search for candidate observations Hi,ti that fall inside
this cone and evaluate them under the trajectory’s model for
the current time step, weighted with a temporal discount λ:

p(Hi,ti |Ht0:t)= p(Hti |Ht0:t)p(Hi,ti |Hti)

= e−λ(t−ti)p(Hi,ti |Ati)p(Hi,ti |Dti).
(9)

After this, the trajectory is updated by the weighted mean
of its predicted position and the supporting observations:

xt+1=
1
Z

(
p(Ht+1|Ht0:t)x

p
t+1+

∑
i

p(Hi,t+1|Ht0:t)xi

)
, (10)



with p(Ht+1|Ht0:t) = e−λ, and normalization factor Z . Ve-
locity, rotation, and appearance model are updated in the
same fashion.

Merit and Interactions. We express the support S of a
trajectory hypothesisHt0:t reaching from t0 to t by the evi-
dence collected from the images It0:t during that time span:

S(Ht0:t|It0:t)= p(Ht0:t)
∑

i

p(Hi,ti|Ht0:t)
p(Hi,ti)

p(Hi,ti|Iti)

∼ p(Ht0:t)
∑

i

p(Hi,ti|Ht0:t)p(Hi,ti|Iti), (11)

For trajectory estimation, this support is used to define the
trajectory interaction matrix Q as follows:

qii = −ε1c(Hi,t0:t) +
∑

Hk,tk
∈Hi

((1−ε2) + ε2 gk,i)

qij = −1
2

∑
Hk,tk

∈Hi∩Hj

((1−ε2) + ε2 gk,∗ + ε3 Oij) , (12)

gk,i = p∗(Hk,tk
|Itk

) + log p(Hk,tk
|Hi),

where H∗ ∈ {Hi,Hj} denotes the weaker of the two tra-
jectory hypotheses; c(Ht0:t) is a model cost that penalizes
holes in the trajectory; and Oij measures the physical over-
lap between the spacetime volumes of Hi and Hj given av-
erage object dimensions.

Thus, two overlapping trajectory hypotheses compete
both for supporting observations and for the physical space
they occupy during their lifetime. This makes it possi-
ble to model complex object-object interactions, such that
two pedestrians cannot walk through each other or that one
needs to yield if the other shoves.

5. Coupling between Detection and Tracking
Equations (6) and (11) define the support that is used to

build up our coupled detection/tracking optimization prob-
lem. Because of its asymmetric nature, we however have to
split up this support between the original matrices Q, S and
the coupling matrices U, V, W . This is done as follows.

The modified interaction matrix Q̃ for the real trajecto-
ries keeps the form from eq.(12), with the exception that
only the support from previous frames is entered into Q̃:

q̃ii =−ε1c(Hi,t0:t) +
∑

Hk,tk
∈Hi,t0:t−1

((1−ε2) + ε2 gk,i) (13)

q̃ij = −1
2

∑
Hk,tk

∈(Hi∩Hj)t0:t−1

((1−ε2) + ε2 gk,∗ + ε3 Oij) , (14)

The matrix R for the virtual trajectories contains simply the
entries rii = ε, rij = 0, with ε a very small constant, and
the matrix U for the interaction between real and virtual
trajectories has entries uik which are computed similar to
the real trajectory interactions qij

uik = −1
2
((1−ε2) + ε2 gk,i + ε3 Oik) . (15)

⎡⎣ Q̃ U V
UT R W

V T WT S̃

⎤⎦ =
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Figure 1. Structure of the coupled optimization matrix (eq. (5)).

The modified object detection matrix S̃ contains as diagonal
entries only the base cost of a detection, and as off-diagonal
elements the full interaction cost between detections,

s̃ii = −κ1ε2 − (1 − ε2), s̃ij = sij . (16)

Finally, the interaction matrices V, W between trajectories
and detections have as entries the evidence a new detection
contributes towards explaining the image data (which is the
same as its contribution to a trajectory),

vij =
1
2

((1 − ε2) + ε2p
∗(Hj |It) + ε2 log p(Hj |Hi)) (17)

wjj = max
i

[vij ] (18)

Note that R, S, and W are all quadratic and of the same size
N ×N and that R and W are diagonal matrices. As can be
easily verified, the elements of the submatrices indeed add
up to the correct objective function. Figure 1 visualizes the
structure of the completed optimization matrix.

To illustrate this definition, we describe the most impor-
tant features of the coupled optimization problem in words:
1) A trajectory is selected if its score outweighs the base
cost in q̃ii. 2) If trajectory Hi is selected, and a compatible
detection Hj is also selected, then Hj contributes to the tra-
jectory score through vij . 3) If a detection Hj is not part of
any trajectory, but its score outweighs the base cost in s̃jj ,
then it is still selected, with the help of its virtual trajectory
and the contribution wjj . 4) If a detection is part of any
selected trajectory, then its virtual trajectory will not be se-
lected, due to the interaction costs uij and the fact that the
merit rjj of a virtual trajectory is less than that of any real
trajectory. 5) Finally, while all this happens, the detections
compete for pixels in the image plane through the interac-
tion costs s̃ij , and the trajectories compete for space in the
object coordinate system through q̃ij .

Recapitulating the above, coupling has the following ef-
fects. First, it supports novel object detections that are con-
sistent with existing trajectories. Eq. (17) states that exist-
ing trajectories impose a prior p(Hj |Hi) on certain object
locations which raises the chance of generating novel de-
tections there above the uniform background level U . We
model this prior as a Gaussian around the projected object
position using the trajectory’s dynamic model D, so that



Figure 2. Influence of past trajectories on object detection. Left:
25th frame of sequence 2, and detected pedestrians. Right: Illus-
tration of the detection prior for the 26th frame. Top view showing
trajectories estimated in the last frame, predicted positions, and de-
tection prior (brighter color means higher probability).

p(Hj |{Hi}) = max[U , maxi[N (xp
i , σ2

pred)]]. Fig. 2 shows
the prior for a frame from one of our test sequences. Sec-
ond, the evidence from novel detections aids trajectories
with which those detections are consistent by allowing them
to account the new information as support.

Iterative Optimization. Optimizing eq. (5) directly is dif-
ficult, since quadratic boolean optimization in its general
form is NP hard. However, many QBPs obey additional
simplifying constraints. In particular, the hypothesis selec-
tion problems for Q and S described earlier are submodu-
lar, and the expected solution is sparse (only few hypothe-
ses will be selected), which allows one to find strong local
maxima, as shown in [19]. However, the new QBP (5) is no
longer submodular, since the interaction matrices V and W
have positive entries.

We therefore resort to an EM-style iterative solution,
which lends itself to the incremental nature of tracking: at
each time step t, object detection is solved using the trajec-
tories from the previous frame (t−1) as prior. In the above
formulation, this corresponds to fixing the vector m. As an
immediate consequence, we can split the detection hypothe-
ses into two groups: those which are supported by a trajec-
tory, and those which are not. We will denote the former by
another binary index vector n+, and the latter by its com-
plement n−. Since for fixed m the term mTQm = const .,
selecting detections amounts to solving

max
v,n

[[
vT nT

][ R W
WT S

][
v
n

]
+ 2mT

[
U V

][v
n

]]
=

max
v,n

[
vT nT

][R+2 diag(UTm) W
WT S+2 diag(V Tm)

][
v
n

]
.

(19)

The interactions UTm by construction only serve to sup-
press the virtual trajectories for the n+. In contrast, V Tm
adds the detection support from the n+ to their score, while
the diagonal interaction matrix W does the same for the
n−, which do not get their support through matrix V . We
can hence further simplify to

max
n

[
nT

(
R+S+2 diag(V Tm)+2 diag(W Tn−)

)
n
]
. (20)

The support W is only applied if no support comes from the
trajectories and if in turn the interaction cost U Tm can be

dropped, which only served to make sure W is outweighed
for any n+. The solution n̂ of (20) is the complete set of
detections for the new frame; the corresponding virtual tra-
jectories are n̂ ∩ n−.

With the detection results from this step, the set of opti-
mal trajectories is updated. This time, the detection results
[vTnT] are fixed, and the optimization reduces to

max
m

[
mT (Q + 2 diag(V n) + 2 diag(Uv)) m

]
. (21)

The third term can be dropped, since virtual trajectories are
now superseded by newly formed real trajectories. The sec-
ond term is the contribution which the new detections make
to the trajectory scores. The two reduced problems (20) and
(21) are again submodular and can be solved with the multi-
branch ascent method introduced in [19].

6. Detailed Implementation
An advantage of our approach is that, based on object

detection, it can track both moving and static objects. This
is a major limitation of tracking approaches based on back-
ground subtraction, which often integrate static objects into
their dynamically updated background models [20]. How-
ever, for optimal results we have to treat the two hypothesis
types differently. Object detector output is often subject to
some jitter caused by noise in the camera signal. While
a moving hypothesis will try to follow that jitter in order
not to miss an upcoming motion of its target object, a static
hypothesis should integrate detections over a longer time
frame in order to arrive at stable localization. Separate pro-
cedures are therefore used for static and dynamic objects.
In both cases, three processes are required: 1) to extend ex-
isting hypotheses; 2) to generate new ones; and 3) to prune
away unsuccessful ones.

Static Objects. For a static object, the sequence of predic-
tion cones collapses to a spacetime cylinder with constant
radius. New static objects are initialized with simple mean-
shift clustering on the groundplane: clusters of detections
around a fixed groundplane location which exhibit sufficient
continuity over time are regarded as potential locations of
static objects. For efficiency, only detections from the few
most recent frames serve as starting points. The cluster cen-
ter defines the object location; a weighted mean over the
cluster members its appearance model.

To avoid unnecessary computations, existing hypothe-
ses are extended in each time step: among the detections
from the current time step t, inliers to the existing cluster
are found and added, and the cluster center and appearance
model are updated by recomputing the new weighted mean.
If no inliers are found, the trajectory is simply extrapolated
through time, leaving the values unchanged.

Moving Objects. Similar mechanisms also serve to update
the set of moving object hypotheses. New trajectories are



Figure 3. Example tracking results visualizing the non-Markovian nature of our approach. At the beginning of the sequence, both pedes-
trians walk close together and only one trajectory is initialized. However, when they separate sufficiently, a second trajectory is added that
reaches back to the moment when both were first observed, while the first trajectory is automatically adjusted to make room for it.

initialized with the EKF framework detailed above: start-
ing from detections in the last few frames, trajectory points
are predicted both forward and backward in time, and their
location and appearance models are updated by a weighted
mean over the prediction and the detections within the un-
certainty ellipse. With the new location, the dynamic model
over the ground plane is updated, and a new location and
uncertainty ellipse are predicted. Note that the procedure
does not require a detection in every frame: the procedure’s
time horizon can be set to tolerate large temporal gaps.

Dynamic model propagation is unidirectional. After
finding new evidence, the already existing part of the tra-
jectory is not re-adjusted. However, in order to reduce the
effect of localization errors, inevitably introduced by limi-
tations of the object detector, the final trajectory hypothesis
is smoothed by local averaging, and its score (11) is recom-
puted. Similar to the static case, repeated computations are
avoided by extending hypotheses from previous time steps.

Hypothesis Pruning. Continually extending the existing
hypotheses (while generating new ones) leads to an ever-
growing hypothesis set, which would quickly become in-
tractable. A conservative pruning procedure is used to con-
trol the number of hypotheses to be evaluated: candidates
extrapolated through time for too long without finding any
new evidence are removed. Similarly, candidates which
have been in the hypothesis set for too long without hav-
ing ever been selected are discontinued (these are mostly
weaker hypotheses, which are always outmatched by oth-
ers in the competition for space). Importantly, the pruning
step only removes hypotheses which have been unsuccess-
ful over a long period of time. All other hypotheses, includ-
ing those not selected during optimization, are still propa-
gated and are thus given a chance to find new support at a
later point in time. This allows the tracker to recover from
failure and retrospectively correct tracking errors.

Identity Management. The hypothesis selection frame-
work helps to ensure that all available information is used at
each time step. However, it delivers an independent expla-
nation at each time step and hence does not by itself keep
track of object identities. Frame-to-frame propagation of
tracked object identities is a crucial capability of tracking

(as opposed to frame-by-frame detection).
Propagating identity is trivial in the case where a trajec-

tory has been generated by extending one from the previous
frame, where the hypothesis ID is simply passed on, as in
a recursive tracker. However, one of the core strengths of
the presented approach is that it does not rely on stepwise
trajectory extension alone. If at any time a newly generated
hypothesis provides a better explanation for the observed
evidence than an extended one, it will replace the older ver-
sion. However, in this situation the new trajectory should
inherit the old identity, in order to avoid an identity switch.

The problem can be solved with a simple heuristic based
on the associated data points: the identities of all selected
trajectories are written into a buffer, together with the cor-
responding set of explained detections. This set is contin-
uously updated as the trajectories grow. Each time a new
trajectory is selected for the first time, it is compared to the
buffer, and if its set of explained detections is similar to an
entry in the buffer, it is identified as the new representative
of that ID, replacing the older entry. If it does not match any
known trajectory, it is added to the buffer with a new ID.

Trajectory Initialization and Termination. Object de-
tection yields fully automatic initialization. Given a new
sequence, the system accumulates pedestrian detections in
each new frame and tries to link them to detections from
previous frames to obtain plausible spacetime trajectories,
which are then fed into the selection procedure. After a few
frames, the merit of a correct trajectory exceeds its cost,
and an object track is started. Although several frames are
required as evidence for a new track, the trajectory is in
hindsight recovered from its beginning.

The automatic initialization however means that trajec-
tory termination needs to be handled explicitly: if an object
leaves the scene, the detections along its track still exist and
may prompt unwanted re-initializations. To control this be-
havior, exit zones are defined in 3D space along the image
borders and are constantly monitored. When an object’s tra-
jectory enters the exit zone from within the image, the ob-
ject is labeled as terminated, and its final trajectory is stored
in a list of terminated tracks. To keep the tracker from re-
using the underlying data, all trajectories from the termina-
tion list are added to the trajectory set and are always se-
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Figure 4. Performance comparison of our coupled detec-
tion+tracking system compared to various baselines.

lected, thus preventing re-initializations based on the same
detections through their interaction costs. The list of termi-
nated tracks effectively serves as a memory, which ensures
that the constraint that no two objects can occupy the same
physical space survives after a hypothesis’ termination.

7. Experimental Results
We now present results on several challenging test se-

quences. All sequences were recorded with a public web-
cam at 15fps, 320×240 pixels resolution, and contain se-
vere MPEG compression artifacts. In all result figures, line
width denotes confidence of the recovered tracks: trajecto-
ries rendered with thin lines have lower scores.

Fig. 3 visualizes our approach’s behavior on a short test
sequence of two pedestrians crossing a street. First, they
walk close together and the detector often yields only a sin-
gle detection. Thus, the support only suffices for a single
trajectory to be initialized. However, as soon as the pedestri-
ans separate, a second trajectory is instantiated that reaches
back to the point at which both pedestrians were first ob-
served. Together, the two trajectories provide a better ex-
planation for the accumulated evidence and are therefore
preferred by model selection. As part of our optimization,
both trajectories are automatically adjusted such that their
spacetime volumes do not intersect.

A more challenging case is displayed in Fig. 5. Here,
multiple people cross the street at the same time, meeting
in the middle. It can be seen that, caused by the occlu-
sion, our system temporarily loses track of two pedestrians,
resulting in identity switches. However, it automatically re-
covers after few frames and returns to the correct identities.
Again, this is something that classical Markovian tracking
approaches are unable to do. In addition, our approach is
able to detect and track the sitting person in the lower right
corner which is indistinguishable from a static background.
Relying on an object detector for input, we are however lim-
ited by the quality of the detections the latter can provide.
Thus, our system will hypothesize wrong tracks in locations

where the detector consistently produces false alarms.
For a quantitative assessment, we annotated every 4th

frame of this sequence manually. We marked all image
locations with 2D bounding boxes in which a person was
visible. We then derived similar bounding boxes from the
tracked 3D volumes and compared them to the annotations.
Following recent object detection evaluations, we consider
a box as correct if it overlaps with the ground-truth anno-
tation by more than 50% using the intersection-over-union
criterion [5]. Only one bounding box per annotation is
counted as correct; every additional one is counted as a false
positive. Note that this compares only localization accuracy,
not person identities. Fig. 4 shows the result of our coupled
system, compared to the baseline delivered by the object de-
tector (just matrix S) and to a baseline from a tracker based
on fixed detections (decoupled matrices Q and S). Our ap-
proach improves on both baselines and results in increased
localization precision.

Finally, Fig. 6 presents results on a very challenging se-
quence with large-scale background changes from an in-
coming tram, many static pedestrians, and frequent occlu-
sions. The results confirm that our approach can deal with
those difficulties and track its targets over long periods.

8. Conclusion
We have presented a novel approach for multi-object

tracking that couples detection and trajectory estimation in
a combined optimization problem. Our approach does not
rely on a Markov assumption, but can integrate informa-
tion over long time frames to revise its decision and recover
from mistakes in the light of new evidence. Qualitative and
quantitative results over several challenging test sequences
demonstrate our method’s performance.
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